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Abstract

Reliable and exact assessment of visibility is essential for safe air traffic. In order to overcome the
drawbacks of the currently subjective reports from human observers, we present an approach to
automatically derive visibility measures by means of image processing. It is based on identification
of visibility of individual landmarks and compiling an overall visibility range. The methods used
are based on concepts of illumination compensation as well as structural (edges) and texture
recognition. Validation on individual landmarks showed a reliable performance of 96% correct
detections. Furthermore, a solution for compiling the overall visibility report is presented, that
resembles the currently used standard in air traffic management.

1. Motivation

In order to guarantee for safe air traffic conegmdl are relying on precise forecasts and
measurements of the current weather situation. &tect acquisition and specification of the
atmospheric condition builds the basis for any dast and thus is elementary for any aviation
weather service. While weather minimthat still allow for efficient and safe air traffiare
continuously lowered, they still have huge impagctair traffic. E.g. thunderstorms [13, 2] along
with all their weather phenomena have severe inftaeon efficient and economic handling of air
traffic. This is also reflected in various delagisdtics [1, 13].
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Figure 1. Classic airport sensor system: meteorological instrumentation and equipments (left),
cellometer (middle), sketch of a visibility sensor (right).

1 visual meteorological conditions: http://en.wikiha.org/wiki/Visual_meteorological_conditions



All major airports operate dedicated sensor systenassess the current weather situation. Besides
“classic” parameters like wind, pressure, humidignd temperature, there are point-like
measurements of visibility and cloud cover inforimat(Figure 1).

One of the essential parameters is a precise neeasut of the visibility in the airport range.
Currently human observers compile visibility regdevery 30 minutes based on visual observation
of known landmarks (prominent structures like buigg, mountain tops, etc...) in a so-called
landmark map (Figure 5 and Figure 6). These lanksn&iave attached the distances to the
observation point, and by identifying which of tedandmarks are still visible, and which not, a
visibility estimate is derived.

This naturally is very subjective to the individualbserver and error-prone, thus an objective
measurement is highly sought by all operators lmnafor efficient flight and tactical air traffic
planning as well as for operational handling of taaffic. The automated measurement with a
visibiliy sensor (Figurel, right) is still a rougistimate only as it calculates the overall longgean
visibility from close and very local observations.

The approach presented in this paper is aimingratlatsing the human observer procedure, by
deriving the visibility of already established lanarks with automatic image processing methods.
As the landmarks completely differ from each otimetheir appearance, structure, size, as well as
by illumination variations (time of the day, chamgimeteorological conditions such like rain, snow
and fog), it is not possible to set-up a uniquehmétthat can cope for all landmarks. Thus, differen
approaches to illumination compensation, structletection, and classification are applied and
evaluated, in order to find the most discriminatmethod for each individual landmark.

The rest of the paper is structured as follows. Wethods applied to landmark detection are
presented in Section 3 following a short overvidwhe relevant literature in this field (Section 2)
By analysis of a comparative study (Section 4)sitshown how to choose, for each landmark
separately, the best suited method for its recmgmiT his is followed by displaying the accuracy of
the method on several landmarks and a discussioth@rstrategy in assessing the prevailing
visibility based on the visibility of each singulandmark. Section 5 concludes with final remarks.

2. Related Work

Current visibility sensors employ the sender arwkirer principle: a ray of light is emitted by a
projector and caught either by a photodetector. (gcgtter meter) or by a digital camera. The
literature review below shows that the usage ofarasfor the measurement of visibility became
more and more popular over the last six years.

In 2005, Luo et al. [9] measured visibility by aymhg the intensities of grey level images. Due to
the fact that high-frequency information dependghenbrightness and the texture in urban images
they developed a model to establish a relationgl@pween frequency components and urban
visibility. They showed that using a Sobel operatorFFT (high pass filtering) is adequate for
extracting high frequency components and thus famnitoring visibility. Furthermore it was proven
that the results of both methods correlate witthestber as well as with human observations.

Also Raina et al. [11] investigated the usage oftiast for the measurement of visibility. Unlike
[9], instead of investigating the whole image, omégions of interest were employed. Their
experiments are based on a network of webcams wdmrgast values of acquired images are
compared to clean day conditions. Statistical eataduas finally allow for the sought classification.

2 METAR: international standard format for reportingather information



Another approach was presented by Kim et al. [7) wivestigated the relationship between the
optical measurement and HSI colour differenceseifTtpoal was to analyze air pollution based on
visibility. The idea for the approach itself is bdson the fact that the colour of sky depends en th
light scattering (e.g. blue for small aerosol mdet and white for larger particles) and especiiky
colour of haze varies with the optical properti€serosol. By measuring the difference of the HSI
space between a target image and the clear skgmnefeimage it is possible to estimate the status
of visibility by the usage of the developed gradugbility level.

Poduri et al. [10] went one step further tryingniake sky analysis available for mobile phones.
Their approach is based on the generation of amytananodel of the sky as a function of
appearance. Visibility is finally estimated by caanigon of a new image with this model. The main
drawback of this method is that it works for clduee sky only.

All those approaches have in common that their rgaad is to “see” the amount of pollution in the
air. The basic idea is always to develop a referenodel and compare it to the newly acquired
image. In contrast to our work we are not interdsie the long distance visibility only but
especially in the maximum visible distance repres@rby the visibility of previously defined
regions of interest. Furthermore, we do not useeaféct weather image” as reference image but
employ several occurring views.

3. Landmark Detection

Our visibility estimation is based on recognitiohgsound landmarks scattered around airports.
Due to different sun illumination throughout they@ad varying weather conditions like rain, snow
and fog, the same landmark can display drastichifgrent appearances. Several approaches have
been proposed for solving the variable illuminatgroblem in image processing. As shown in [12]
for face recognition under various lighting conaits these approaches can be classified into three
main categoriesiormalization, invariant features extraction andmodelling.

The first category of approachem malization) includes image pre-processing algorithms that are
employed to compensate and normalize the illunonatSince most of these algorithms do not
require any training or modelling they can be cdesed as general purpose image pre-processing
algorithms like histogram equalization, gamma adfo®, and logarithmic transforms.

The second categoryinyariant features extraction) aims at extracting illumination invariant
features from the image and applies the recognitiornthose. Edge maps and different texture
descriptors (Gabor filtering, Local Binary Pattere&...) belong to this category.

The last category of approachesoelling) generally uses low-dimensional linear subspaoes f
modelling image variations under different lightirgpnditions. For instance, the Principal
Component Analysis (PCA) falls among this categdriilese approaches generally require a
training set of images representing the object uadet of different illumination conditions.

3.1. Illumination nor malization

The Retinex theory [8] yields an algorithm for extting an illumination-normalized representation
of the image. The theory is based on the refleetathemination model of human vision which
assumes that it is sensitive to scene reflectanddagal change of contrast while being insensitive
to illumination conditions and global brightnessdks. The basic definition for a pixel at position

(X, y) is:
R(x,y)=logl (x, y)—Iog(Ke‘rz’ cO1(x, y)) 1)
with K :}émz , r2=x?+y?andc=20"



This is the logarithmic difference (e.g. the logam of the quotient) between the image and a
version of it convolved with a low-pass filter (i.©6aussian filter), the low frequency component
being considered as the illuminance of the inpatdus (Figure 2).

' Fiuréz: 6riginal image (left), Retinex (right)

The constant is referred as the scale of the Retinex and byingiit, Jobson et al. [6] proposed an

extension to the original Retinex algorithm thagt@ad of giving the result at a single scale, astpu

an image constructed as the weighted sum of segdéed Retinex images. That implementation
displays a better balance of dynamic compressidrcalour rendition.

3.2. Invariant features

Edges are one of the main illumination invariamtees in images. The Canny edge detector [4] is
a well-known edge detection algorithm adaptablevaoious environments. Its parameters for
recognition of edges of differing characteristiepending on the particular requirements of a given
implementation. It uses a multi-stage algorithmdedect a wide range of edges in images. It is
aimed at discovering the “optimal” edge detectitgoathm: optimal in the way that the algorithm
should find as many real edges in the image aslpesshe edges marked should be spatially as
close as possible to the real edges and a givee idthe image should not be doubled, and
possibly, image noise should not create false effggare 3).

Figur3: origina] image (left), Can gector (ht)

Another type of illumination invariant featurestine distribution of local intensity gradients oiged
directions. Local object appearance and shape d¢tn de characterized by this kind of
distribution, even without precise knowledge of toeresponding gradient or edge positions. That
can be implemented by dividing the image window isinall spatial regions (e.g. “cells”), for each
cell accumulating a local 1-D histogram of gradidimections or edge orientations over the pixels
of the cell. For better invariance to illuminatiohis also useful to contrast-normalize the lowzalls
over somewhat larger spatial regions (i.e. “blogks'hese normalized descriptor blocks are
referred as Histogram of Oriented Gradient (HOGJcdetors [5]. Operatively an image is tiled
with a dense (e.g. overlapping) grid of HOG degorgpand the resulting combined feature vector
is then used for achieving recognition.

3.3. Moddlling

Numerous computer vision systems employ the appeashased paradigm for object recognition.
One primary advantage of appearance-based metlsoodbat it is not necessary to create
representations or models for objects, since, fgivan object its model is implicitly defined byeth
selection of the sample images of the object. Thestnpopular technique is the Principal
Components Analysis (PCA) which was first usedféme recognition [15], and is herein used on
different appearances of landmarks.



4. Compar ative study

The presented study compares the different selattetthods of illumination compensation by
applying them on a large data set of real imagdarafmarks. In order to compare the methods a
common measure is used. Based on that measureomelsiw to select the one giving the best
result for detecting a landmark. For two repredarddandmarks, we assess the accuracy of the
selected method. We end-up by showing how to geptbvailing visibility based on the visibility
of each separate landmark.

4.1. Training and test data

All tests have been carried out on images of lamlsn&rom two different airports: Innsbruck
(Austria) and Graz (Austria). From the first airp®b landmarks (Figure 5) were used to assess the
visibility distance while 35 were used from the@®at one (Figure 6).

Figure 6: Graz airport landmarks

For each airport and each given landmark three sktsnages were derived: a training set
consisting of images with visible landmark, a tstwith visible landmark, and a test set where the
landmark wasot visible. All sets were equally sized and all togeth500 images were selected for
our experiments. Note that we also considered usaiging sets consisting of images where the
landmark werenot visible but experimental evaluation showed thad #pproach yielded worse
recognition results than building training setsméges with visible landmarks. This behaviour can
be explained by the fact that images where thentamkl is not visible shows far less appearance
variability than visible landmark images, thus loing the discriminative power of the training set.

4.2. Method comparison

Instead of evaluating the different illuminatiomgoensation methods solely against each other, we
inserted a method for landmark detection not corsgemg for illumination in the comparison:
simple template matching [3] with a noise removat bdge preserving preprocessing: bilateral
filtering [14]. This method is non-iterative, locaimple, and smoothes images while preserving
edges. It is designed, by means of a nonlinear gwatbn of domain and range filtering, to prevent
averaging across edges while smoothing an imageonitbines gray levels based on both their
geometric closeness and their photometric simylaghd prefers near values to distant values in
both domain and range (Figure 7).



Figure 7: original image (Ieft), bilateral filtered (right)
In order to compare the results of the differenthmds on the different test sets, a common
performance measure is necessary. Classically agenprocessing the cross-correlation is used for
the similarity estimation of two images. It is egpsed mathematically as follows:

- i >3 (f(z,y) —;f)éf(xsy) — 1) o

U
This measure is appealing since it can easily bmalized between 1 (meaning the two images are
identical) and -1 (meaning the two images are opgosVhile it is easy to cross-correlate the
images resulting from applying the Retinex, Canthyeedetection and bilateral filtering methods, it
is a less straightforward task for the appearamsed paradigm method (e.g. PCA). Note that for
the HOG method, even though its output is not aagien the feature vectors (HOG descriptors) can
directly be compared with cross-correlation. PCAbislding, with a dimensional reduction, an
eigenspace out of an image training set. Projedgsgimages into that space and computing their
distance to the nearest projection of a trainingqgen cannot be normalized. To alleviate that
problem, we use the reconstruction (e.g. back-ptigje or approximation) of the test image from
its eigenspace coordinates for cross-correlatiopgaes.

4.3. Method selection

In order to select the method best suited for dieig@ given landmark, we first evaluated for each
method the test set containing the positive sam(olesges where the landmark is visible) and the
test set containing the negative samples (imagesemmne landmark isot visible) against their
respective training set. Then, for each method¢ceveputed the mean and standard deviation of the
performance of the two test sets. One can eaglyrdi out that the performance on the test set
containing the positive samples should be highan the one on the test set containing the negative
samples. In order to quantify the discriminatiorwpo we assume that the bigger the interval
between the mean (minus its standard deviatiothefperformance on the test set containing the
positive samples and the mean (plus its standavéhtien) of the performance on the test set
containing the negative samples, the better thénadets suited for detecting the landmark under
investigation. The two tables in Figure 8 and Feglrshow highlighted in green which method
scored best for each individual landmark. The matirthe landmark itself (e.g. textured, edge
based, colored) influences the automatic selectfots appropriate detection method. For instance,
structural landmarks (buildings, mountain tops)tém favour the edge-based approaches, whereas
plain landmarks (meadows, forests) are better thtday textural algorithms.

Land [Retinex |Canny |Bilateral |[PCA+ |[HOG 9 0.111 | 0.065 | 0.200 | 0.292 | 0.292

Mark |Min[] |Min{] | Min(] |Min[] |Min] 10 | 0.296 | 0.097 | 0.023 | 0.028 | 0.166
1 0.129 |0.065 | 0198 |0.140 |0.190 11 | 0.145 | 0.065 | 0.068 |-0.253 | 0.034
2 0.189 | 0.048 | 0.279 |0.406 |0.263 12 | 0.247 | 0.083 | 0.191 | -0.097 | 0.353
3 0.151 0.047 | 0335 (0.345 |0.220 13 1 0.331 | 0.196 | 0.064 | 0.184 | 0.404
4 0.330 0.205 0.339  [0.159 |0.283 14 | 0.262 | 0.074 | -0.336 | -0.071 | 0.203
5 0315 10267 |-0021 l0083 |0.206 15 | 0439 | 0.259 | 0.250 | 0.124 | 0.521
6 0.021 0237 |-0010 |0.039 |0.111 16 | 0.200 | 0.115 | -0.135 | 0.062 | 0.116
7 0.168 |0.107 |-0.112 |-0.170 |0.143

Figure 8: Landmark method selection (Innsbruck airport)



Land Retinex | Canny | Bilateral | HOG | PCA+ 18 0.166 | 0.000 0.417 0.438 | 0.106

Mark | Min[] | Min[] | Min[] | Min[] | Min[] 19 | 0469 | 0028 | 0120 | 0.468 | 0400
1 0283 | 0113 | 0.149 | 0.516 | 0427 20 | 0229 |-0.009 | 0099 | 0294 | 0.447
2 029 | 0085 | 0363 | 0457 | 0.424 21 | 0210 | 0.116 | 0089 | 0.472 | 0.229
3 0128 | 0046 | 0341 | 0400 | 0.618 22 | 0118 | -0007 | 0342 | 0.409 | 0.229
4 0131 | 0060 | -0.134 | 0.530 | 0.313 23 | 0319 | 0039 | 0158 | 0.350 | 0.173
5 0.085 | 0065 | -0.122 | 0434 | 0.608 24 | 0210 | -0011 | 0012 | 0235 | 0.443
6 049 | 0189 | 0624 | 0.580 | 0.708 25 | 0190 |-0210 | -0.140 | 0.009 | -0.015
7 0239 | 0192 | 0636 | 0.501 | 0.726 26 | 0045 |-0079 | 0445 | 0.103 | -0.098
8 0182 | 0.160 | 0552 | 0.358 | 0.707 27 | 0085 |-0294 | 0017 | 0207 | 0.173

9 0360 | 0122 | 0371 | 0.581 | 0.598 28 | 0269 | -0018 | -0.146 | -0.071 | 0.035
10 0249 | 0149 | 0581 | 0496 | 0.724 20 | 0204 | 096 | 0188 | 0251 | 0.144

11 | 0373 | 0148 | 0070 | 0573 | 0.651 30 | 04149 | 0000 | -0185 | 0450 | 0015
12 [ 0030 | 0067 | 015 | 0.386 (70.570 31 | 0381 | 0433 | 0275 | 0327 | 0434
13 | 0233 | 0070 | 0495 | 0431 | 0425 | | 30 | 0112 | 0055 | 003 | 0458 | 0489
14 0099 | 0028 | 018 170.588° 0.379 33 | 0350 | 0000 | 0253 | 0.244 | 0.371
15 [ 0159 | 0.069 | 0434 | 0.379 [70.563 3 | 0472 | 0108 | 0060 | 0.234 | 0.346

16 0168 | -0036 | 0420 | 06151 0528 | | 35 | 0204 | 0.000 | 0.187 | 0.476 | 0337
17 | 002 | 0000 | 0003 | 0306 | 0065

Figure 9: Landmark method selection (Graz airport)

4.4. Detection accuracy

Estimating the accuracy of individual landmark d&ten for a selected method is a very time
consuming task since there is no ground truth datary image has to be visually verified by a
human operator for the visibility (or not) of a sgie landmark.

We performed that task for the landmark #12 (a raeadituated roughly 10km away from the
control camera) of the Innsbruck airport and ev@di@an more than 15000 images how the selected
method (in this case HOG) is performing. The redogm rate was about 96% and among the 4%
misses the rate of false positives and false negatas equally spread (roughly 2% each).

We did the same for the landmark #22 (an airpoihtaaance building situated 2200m away from
the control camera) of the Graz airport and evalll@n more than 4000 images how the selected
method (HOG again) is performing. The recognitiaterwas again about 96% and among the 4%
misses with a rate of 3% for false positives andf@alse negatives.

4.5. Visbility estimation

Finally a global visibility estimate is inferredofn the visibility of each individual landmark. We
know for each individual landmark its distance lbe tontrol camera thus we can order them by
their corresponding distance. For the InnsbrugBaairthe landmarks are spread from a distance of
250m to a distance of 20km while for the Graz airpitve landmark distances range from 90m to
55km. There are two natural ways to automaticallgrithe global visibility: either set the visityli

to the distance of the furthest visible landmarét caring if in between one landmark was not
detected (optimistic approach) or set the visipild the distance of the last detected landmark in
the uninterrupted sequence of visible landmarksgenovative approach). While the first approach
is more sensitive to false positives (e.g. a lant@tnis reported as visible while it is not), tests
showed that this approach delivers distance esomatsults which are comparable with the
visibility reported by current METAR reports.

5. Conclusion

Variable illumination is a major problem in landrkatetection and recognition. The aim of this
work was to investigate several illumination comgetion and normalization algorithms. By the
presented comparative study, five different imageg@ssing methods were tested on a total of 4500
images. The methods were compared and a measuseléating the most appropriate method for
each individual landmark was discussed. The acguddcthe selected methods was visually



assessed for two landmarks on more than 15000 snage it displayed a very satisfying
recognition rate of 96%. Finally, we proposed ahudtto infer the overall airport visibility from

individual landmark visibility. Setting the overalisibility distance to the distance of the furthes
visible landmark resembled results to what is regabiby air controllers. Anyway, having the
knowledge of each individual landmark visibility exgs the field for a new quality in visibility

reports (e.g. visibility in several directions, éions) compared to the currently used single desta

measures only.

6. Acknowledgments
This research was supported by the TAKE OFF progranan initiative of the Austrian “Federal
Ministry for Transport, Innovation and Technologyider contract number 820742.

7. References

[1] AEA —the Association of European Airlines: AEEONSUMER REPORT FOR 4th QUARTER AND ANNUAL
2007. http://files.aea.be/News/PR/Pr08-006.pdf

[2] ALLAN, S.S., BEESLEY, J.A., EVANS, J.E. and G®Y, S.G., Analysis of Delay Causality at Newark
International Airport, in: 4th USA/Europe Air TradfManagement R&D Seminar, (2001), Santa Fe, USA.

[3] BRUNELLI, R., A Template Matching Techniqgues@omputer Vision: Theory and Practice, Wiley, ISBRB-0-
470-51706-2, 2009.

[4] CANNY, J., A Computational Approach To Edge Betion, in: IEEE Transactions on Pattern Analysid a
Machine Intelligence, Vol. 8, No. 6 (1986), 679-698

[5] DALAL, N. and TRIGGS, B., Histograms of Orient&radients for Human Detection, in: Proceedingshef2005
IEEE Computer Society Conference on Computer Visioth Pattern Recognition (CVPR'05), Vol. 1 (20@86-893.

[6] JOBSON, D.J., RAHMAN, Z. and WOODELL, G.A., Auttiscale retinex for bridging the gap between colo
images and the human observation of scenes, irE [HEns. on Image Processing, Vol. 6, No. 7 (1996%-976.

[7]1 KIM, K.W. and KIM, Y. J., Perceived Visibilitfeasurement Using the HSI Color Difference Modwl Journal
of the Korean Physical Society, Vol. 46, No. 5 (801243 — 1250.

[8] LAND, E.H., The retinex theory of color visiom Scientific American, Vol. 237, No. 6 (1977),8:€.28.

[9] LUO, C., WEN, C., YUAN, C., LIAW, J., LO, C. ahCHIU, S., Investigation of urban atmospherichiigy by
high-frequency extraction: Model development amttifiest, in: Atmospheric Environment, Vol. 39 (8002245-
2552,

[10] PODURI, S., NIMKAR, A. and SUKHATME, G. S., ¥ibility Monitoring using Mobile Phones,
http://robotics.usc.edu/~mobilesensing/visibilitydMle AirQualitySensing.pdf(2010).

[11] RAINA, D. S., PARKS, N. J., LI, W., GRAY, R. Wand DATTNER, S. L., An Innovative Methodology for
Analyzing Digital Visibility Images in an Urban Eimenment, in: Journal of Air and Waste Manage, \&&.(2005),
1733-1742.

[12] RUIZ-DEL-SOLAR, J. and QUINTEROS J., llluminath compensation and normalization in eigenspaceda
face recognition: A comparative study of differen¢-processing approaches, in: Pattern Recogriigtiers, Vol. 29
(2008), 1966-1979.

[13] SASSE, M. and HAUF, T., A study of thundersteinduced delays at Frankfurt Airport, Germany, in:
Meteorological Applications, Vol. 10 (2003), 21-30.

[14] TOMASI, C. and MANDUCHI, R., Bilateral Filtemg for Gray and Color Images, in: Proceedings eflHEE
International Conference on Computer Vision, (198)mbay, India.

[15] TURK, M. and PENTLAND, A., Eigenfaces for Regution, in: Journal of Cognitive Neuroscience, \3pINo.1
(1991), 71-86.



