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Abstract 
Reliable and exact assessment of visibility is essential for safe air traffic. In order to overcome the 
drawbacks of the currently subjective reports from human observers, we present an approach to 
automatically derive visibility measures by means of image processing. It is based on identification 
of visibility of individual landmarks and compiling an overall visibility range. The methods used 
are based on concepts of illumination compensation as well as structural (edges) and texture 
recognition. Validation on individual landmarks showed a reliable performance of 96% correct 
detections. Furthermore, a solution for compiling the overall visibility report is presented, that 
resembles the currently used standard in air traffic management. 
 
1. Motivation 
In order to guarantee for safe air traffic controllers are relying on precise forecasts and 
measurements of the current weather situation. The exact acquisition and specification of the 
atmospheric condition builds the basis for any forecast and thus is elementary for any aviation 
weather service. While weather minima1 that still allow for efficient and safe air traffic are 
continuously lowered, they still have huge impact on air traffic. E.g. thunderstorms [13, 2] along 
with all their weather phenomena have severe influence on efficient and economic handling of air 
traffic. This is also reflected in various delay-statistics [1, 13]. 

 
Figure 1: Classic airport sensor system: meteorological instrumentation and equipments (left),  

ceilometer (middle), sketch of a visibility sensor (right). 
 

                                                 
1 Visual meteorological conditions: http://en.wikipedia.org/wiki/Visual_meteorological_conditions 



 

 
All major airports operate dedicated sensor systems to assess the current weather situation. Besides 
“classic” parameters like wind, pressure, humidity, and temperature, there are point-like 
measurements of visibility and cloud cover information (Figure 1). 
One of the essential parameters is a precise measurement of the visibility in the airport range. 
Currently human observers compile visibility reports2 every 30 minutes based on visual observation 
of known landmarks (prominent structures like buildings, mountain tops, etc...) in a so-called 
landmark map (Figure 5 and Figure 6). These landmarks have attached the distances to the 
observation point, and by identifying which of those landmarks are still visible, and which not, a 
visibility estimate is derived. 
This naturally is very subjective to the individual observer and error-prone, thus an objective 
measurement is highly sought by all operators to allow for efficient flight and tactical air traffic 
planning as well as for operational handling of air traffic. The automated measurement with a 
visibiliy sensor (Figure1, right) is still a rough estimate only as it calculates the overall long-range 
visibility from close and very local observations. 
The approach presented in this paper is aiming at emulating the human observer procedure, by 
deriving the visibility of already established landmarks with automatic image processing methods. 
As the landmarks completely differ from each other in their appearance, structure, size, as well as 
by illumination variations (time of the day, changing meteorological conditions such like rain, snow 
and fog), it is not possible to set-up a unique method that can cope for all landmarks. Thus, different 
approaches to illumination compensation, structure detection, and classification are applied and 
evaluated, in order to find the most discriminating method for each individual landmark. 
The rest of the paper is structured as follows. The methods applied to landmark detection are 
presented in Section 3 following a short overview of the relevant literature in this field (Section 2). 
By analysis of a comparative study (Section 4) it is shown how to choose, for each landmark 
separately, the best suited method for its recognition. This is followed by displaying the accuracy of 
the method on several landmarks and a discussion on the strategy in assessing the prevailing 
visibility based on the visibility of each singular landmark. Section 5 concludes with final remarks. 
 
2. Related Work 
Current visibility sensors employ the sender and receiver principle: a ray of light is emitted by a 
projector and caught either by a photodetector (e.g. scatter meter) or by a digital camera. The 
literature review below shows that the usage of cameras for the measurement of visibility became 
more and more popular over the last six years. 
In 2005, Luo et al. [9] measured visibility by analyzing the intensities of grey level images. Due to 
the fact that high-frequency information depends on the brightness and the texture in urban images 
they developed a model to establish a relationship between frequency components and urban 
visibility. They showed that using a Sobel operator or FFT (high pass filtering) is adequate for 
extracting high frequency components and thus for monitoring visibility. Furthermore it was proven 
that the results of both methods correlate with each other as well as with human observations. 
Also Raina et al. [11] investigated the usage of contrast for the measurement of visibility. Unlike 
[9], instead of investigating the whole image, only regions of interest were employed. Their 
experiments are based on a network of webcams where contrast values of acquired images are 
compared to clean day conditions. Statistical evaluations finally allow for the sought classification. 

                                                 
2 METAR: international standard format for reporting weather information 



Another approach was presented by Kim et al. [7] who investigated the relationship between the 
optical measurement and HSI colour differences.  Their goal was to analyze air pollution based on 
visibility. The idea for the approach itself is based on the fact that the colour of sky depends on the 
light scattering (e.g. blue for small aerosol particles and white for larger particles) and especially the 
colour of haze varies with the optical properties of aerosol. By measuring the difference of the HSI 
space between a target image and the clear sky reference image it is possible to estimate the status 
of visibility by the usage of the developed grading visibility level. 
Poduri et al. [10] went one step further trying to make sky analysis available for mobile phones. 
Their approach is based on the generation of an analytic model of the sky as a function of 
appearance. Visibility is finally estimated by comparison of a new image with this model. The main 
drawback of this method is that it works for cloud free sky only. 
All those approaches have in common that their main goal is to “see” the amount of pollution in the 
air. The basic idea is always to develop a reference model and compare it to the newly acquired 
image. In contrast to our work we are not interested in the long distance visibility only but 
especially in the maximum visible distance represented by the visibility of previously defined 
regions of interest. Furthermore, we do not use a “perfect weather image” as reference image but 
employ several occurring views. 
 
3. Landmark Detection 
Our visibility estimation is based on recognition of ground landmarks scattered around airports. 
Due to different sun illumination throughout the day and varying weather conditions like rain, snow 
and fog, the same landmark can display drastically different appearances. Several approaches have 
been proposed for solving the variable illumination problem in image processing. As shown in [12] 
for face recognition under various lighting conditions these approaches can be classified into three 
main categories: normalization, invariant features extraction and modelling. 
The first category of approaches (normalization) includes image pre-processing algorithms that are 
employed to compensate and normalize the illumination. Since most of these algorithms do not 
require any training or modelling they can be considered as general purpose image pre-processing 
algorithms like histogram equalization, gamma correction, and logarithmic transforms. 
The second category (invariant features extraction) aims at extracting illumination invariant 
features from the image and applies the recognition on those. Edge maps and different texture 
descriptors (Gabor filtering, Local Binary Patterns, etc...) belong to this category. 
The last category of approaches (modelling) generally uses low-dimensional linear subspaces for 
modelling image variations under different lighting conditions. For instance, the Principal 
Component Analysis (PCA) falls among this category. These approaches generally require a 
training set of images representing the object under a lot of different illumination conditions. 
 

3.1. Illumination normalization 
The Retinex theory [8] yields an algorithm for extracting an illumination-normalized representation 
of the image. The theory is based on the reflectance illumination model of human vision which 
assumes that it is sensitive to scene reflectance and local change of contrast while being insensitive 
to illumination conditions and global brightness levels. The basic definition for a pixel at position 
(x, y) is: 
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This is the logarithmic difference (e.g. the logarithm of the quotient) between the image and a 
version of it convolved with a low-pass filter (i.e. Gaussian filter), the low frequency component 
being considered as the illuminance of the input stimulus (Figure 2). 
 

 
Figure 2: original image (left), Retinex (right) 

 
The constant c is referred as the scale of the Retinex and by varying it, Jobson et al. [6] proposed an 
extension to the original Retinex algorithm that instead of giving the result at a single scale, outputs 
an image constructed as the weighted sum of single scaled Retinex images. That implementation 
displays a better balance of dynamic compression and colour rendition. 
 

3.2. Invariant features 
Edges are one of the main illumination invariant features in images. The Canny edge detector [4] is 
a well-known edge detection algorithm adaptable to various environments. Its parameters for 
recognition of edges of differing characteristics depending on the particular requirements of a given 
implementation. It uses a multi-stage algorithm to detect a wide range of edges in images. It is 
aimed at discovering the “optimal” edge detection algorithm: optimal in the way that the algorithm 
should find as many real edges in the image as possible, the edges marked should be spatially as 
close as possible to the real edges and a given edge in the image should not be doubled, and 
possibly, image noise should not create false edges (Figure 3). 
 

 
Figure 3: original image (left), Canny edge detector (right) 

 
Another type of illumination invariant features is the distribution of local intensity gradients or edge 
directions. Local object appearance and shape can often be characterized by this kind of 
distribution, even without precise knowledge of the corresponding gradient or edge positions. That 
can be implemented by dividing the image window into small spatial regions (e.g. “cells”), for each 
cell accumulating a local 1-D histogram of gradient directions or edge orientations over the pixels 
of the cell. For better invariance to illumination, it is also useful to contrast-normalize the local cells 
over somewhat larger spatial regions (i.e. “blocks”). These normalized descriptor blocks are 
referred as Histogram of Oriented Gradient (HOG) descriptors [5]. Operatively an image is tiled 
with a dense (e.g. overlapping) grid of HOG descriptors and the resulting combined feature vector 
is then used for achieving recognition. 
 

3.3. Modelling 
Numerous computer vision systems employ the appearance-based paradigm for object recognition. 
One primary advantage of appearance-based methods is that it is not necessary to create 
representations or models for objects, since, for a given object its model is implicitly defined by the 
selection of the sample images of the object. The most popular technique is the Principal 
Components Analysis (PCA) which was first used for face recognition [15], and is herein used on 
different appearances of landmarks. 



4. Comparative study 
The presented study compares the different selected methods of illumination compensation by 
applying them on a large data set of real images of landmarks. In order to compare the methods a 
common measure is used. Based on that measure we show how to select the one giving the best 
result for detecting a landmark. For two representative landmarks, we assess the accuracy of the 
selected method. We end-up by showing how to get the prevailing visibility based on the visibility 
of each separate landmark. 
 

4.1. Training and test data 
All tests have been carried out on images of landmarks from two different airports: Innsbruck 
(Austria) and Graz (Austria). From the first airport 15 landmarks (Figure 5) were used to assess the 
visibility distance while 35 were used from the second one (Figure 6). 
 

 
Figure 5: Innsbruck airport landmarks 

 

 
Figure 6: Graz airport landmarks 

 
For each airport and each given landmark three sets of images were derived: a training set 
consisting of images with visible landmark, a test set with visible landmark, and a test set where the 
landmark was not visible. All sets were equally sized and all together 4500 images were selected for 
our experiments. Note that we also considered using training sets consisting of images where the 
landmark were not visible but experimental evaluation showed that this approach yielded worse 
recognition results than building training sets of images with visible landmarks. This behaviour can 
be explained by the fact that images where the landmark is not visible shows far less appearance 
variability than visible landmark images, thus lowering the discriminative power of the training set. 
 

4.2. Method comparison 
Instead of evaluating the different illumination compensation methods solely against each other, we 
inserted a method for landmark detection not compensating for illumination in the comparison: 
simple template matching [3] with a noise removal but edge preserving preprocessing: bilateral 
filtering [14]. This method is non-iterative, local, simple, and smoothes images while preserving 
edges. It is designed, by means of a nonlinear combination of domain and range filtering, to prevent 
averaging across edges while smoothing an image. It combines gray levels based on both their 
geometric closeness and their photometric similarity, and prefers near values to distant values in 
both domain and range (Figure 7). 
 



 
Figure 7: original image (left), bilateral filtered (right) 

 
In order to compare the results of the different methods on the different test sets, a common 
performance measure is necessary. Classically in image processing the cross-correlation is used for 
the similarity estimation of two images. It is expressed mathematically as follows: 
 

 
(2) 

 
This measure is appealing since it can easily be normalized between 1 (meaning the two images are 
identical) and -1 (meaning the two images are opposite). While it is easy to cross-correlate the 
images resulting from applying the Retinex, Canny edge detection and bilateral filtering methods, it 
is a less straightforward task for the appearance-based paradigm method (e.g. PCA). Note that for 
the HOG method, even though its output is not an image, the feature vectors (HOG descriptors) can 
directly be compared with cross-correlation. PCA is building, with a dimensional reduction, an 
eigenspace out of an image training set. Projecting test images into that space and computing their 
distance to the nearest projection of a training image cannot be normalized. To alleviate that 
problem, we use the reconstruction (e.g. back-projection or approximation) of the test image from 
its eigenspace coordinates for cross-correlation purposes. 
 

4.3. Method selection 
In order to select the method best suited for detecting a given landmark, we first evaluated for each 
method the test set containing the positive samples (images where the landmark is visible) and the 
test set containing the negative samples (images where the landmark is not visible) against their 
respective training set. Then, for each method, we computed the mean and standard deviation of the 
performance of the two test sets. One can easily figure out that the performance on the test set 
containing the positive samples should be higher than the one on the test set containing the negative 
samples. In order to quantify the discrimination power we assume that the bigger the interval 
between the mean (minus its standard deviation) of the performance on the test set containing the 
positive samples and the mean (plus its standard deviation) of the performance on the test set 
containing the negative samples, the better the method is suited for detecting the landmark under 
investigation. The two tables in Figure 8 and Figure 9 show highlighted in green which method 
scored best for each individual landmark. The nature of the landmark itself (e.g. textured, edge 
based, colored) influences the automatic selection of its appropriate detection method. For instance, 
structural landmarks (buildings, mountain tops) tend to favour the edge-based approaches, whereas 
plain landmarks (meadows, forests) are better detected by textural algorithms. 
 

Land 
Mark 

Retinex 
Min [ ] 

Canny 
Min [ ] 

Bilateral 
Min [ ] 

PCA+ 
Min [ ] 

HOG 
Min [ ] 

1 0.129 0.065 0.198 0.140 0.190 

2 0.189 0.048 0.279 0.406 0.263 

3 0.151 0.047 0.335 0.345 0.220 

4 0.330 0.205 0.339 0.159 0.283 

5 0.315 0.267 -0.021 0.083 0.206 

6 0.021 0.237 -0.010 -0.039 0.111 

7 0.168 0.107 -0.112 -0.170 0.143 

9 0.111 0.065 0.200 0.292 0.292 

10 0.296 0.097 0.023 0.028 0.166 

11 0.145 0.065 0.068 -0.253 0.034 

12 0.247 0.083 0.191 -0.097 0.353 

13 0.331 0.196 0.064 0.184 0.404 

14 0.262 0.074 -0.336 -0.071 0.203 

15 0.439 0.259 0.250 0.124 0.521 

16 0.200 0.115 -0.135 0.062 0.116 

Figure 8: Landmark method selection (Innsbruck airport) 



Land 
Mark 

Retinex 
Min [ ] 

Canny 
Min [ ] 

Bilateral 
Min [ ] 

HOG 
Min [ ] 

PCA+ 
Min [ ] 

1 0.283 0.113 0.149 0.516 0.427 

2 0.296 0.085 0.363 0.457 0.424 

3 0.128 0.046 0.341 0.400 0.618 

4 0.131 0.060 -0.134 0.530 0.313 

5 0.085 0.065 -0.122 0.434 0.608 

6 0.496 0.189 0.624 0.580 0.708 

7 0.239 0.192 0.636 0.501 0.726 

8 0.182 0.160 0.552 0.358 0.707 

9 0.360 0.122 0.371 0.581 0.598 

10 0.249 0.149 0.581 0.496 0.724 

11 0.373 0.148 0.070 0.573 0.651 

12 0.030 0.067 0.156 0.386 0.570 

13 0.233 0.070 0.495 0.431 0.425 

14 0.099 0.028 0.187 0.538 0.379 

15 0.159 0.069 0.434 0.379 0.563 

16 0.168 -0.036 0.420 0.615 0.528 

17 -0.026 0.000 0.003 0.306 0.065 

18 0.166 0.000 0.417 0.438 0.106 

19 0.469 0.028 0.120 0.468 0.400 

20 0.229 -0.009 0.099 0.294 0.447 

21 0.210 0.116 0.089 0.472 0.229 

22 0.118 -0.007 0.342 0.409 0.229 

23 0.319 0.039 0.158 0.350 0.173 

24 0.210 -0.011 -0.012 0.235 0.443 

25 -0.190 -0.210 -0.140 0.009 -0.015 

26 0.045 -0.079 0.145 0.103 -0.098 

27 0.085 -0.294 0.017 0.207 0.173 

28 -0.269 -0.018 -0.146 -0.071 0.035 

29 0.224 0.196 -0.188 0.251 0.144 

30 0.149 0.000 -0.185 0.150 0.015 

31 0.381 0.133 0.275 0.327 0.434 

32 0.112 0.055 0.034 0.458 0.489 

33 0.350 0.000 0.253 0.244 0.371 

34 0.172 0.108 0.060 0.234 0.346 

35 0.224 0.000 0.187 0.476 0.337 

Figure 9: Landmark method selection (Graz airport) 
4.4. Detection accuracy 
Estimating the accuracy of individual landmark detection for a selected method is a very time 
consuming task since there is no ground truth data. Every image has to be visually verified by a 
human operator for the visibility (or not) of a specific landmark. 
We performed that task for the landmark #12 (a meadow situated roughly 10km away from the 
control camera) of the Innsbruck airport and evaluated on more than 15000 images how the selected 
method (in this case HOG) is performing. The recognition rate was about 96% and among the 4% 
misses the rate of false positives and false negative was equally spread (roughly 2% each). 
We did the same for the landmark #22 (an airport maintenance building situated 2200m away from 
the control camera) of the Graz airport and evaluated on more than 4000 images how the selected 
method (HOG again) is performing. The recognition rate was again about 96% and among the 4% 
misses with a rate of 3% for false positives and 1% for false negatives. 
 

4.5. Visibility estimation 
Finally a global visibility estimate is inferred from the visibility of each individual landmark. We 
know for each individual landmark its distance to the control camera thus we can order them by 
their corresponding distance. For the Innsbruck airport the landmarks are spread from a distance of 
250m to a distance of 20km while for the Graz airport, the landmark distances range from 90m to 
55km. There are two natural ways to automatically infer the global visibility: either set the visibility 
to the distance of the furthest visible landmark, not caring if in between one landmark was not 
detected (optimistic approach) or set the visibility to the distance of the last detected landmark in 
the uninterrupted sequence of visible landmarks (conservative approach). While the first approach 
is more sensitive to false positives (e.g. a landmark is reported as visible while it is not), tests 
showed that this approach delivers distance estimation results which are comparable with the 
visibility reported by current METAR reports. 
 
5. Conclusion 
Variable illumination is a major problem in landmark detection and recognition. The aim of this 
work was to investigate several illumination compensation and normalization algorithms. By the 
presented comparative study, five different image processing methods were tested on a total of 4500 
images. The methods were compared and a measure for selecting the most appropriate method for 
each individual landmark was discussed. The accuracy of the selected methods was visually 



assessed for two landmarks on more than 15000 images and it displayed a very satisfying 
recognition rate of 96%. Finally, we proposed a method to infer the overall airport visibility from 
individual landmark visibility. Setting the overall visibility distance to the distance of the furthest 
visible landmark resembled results to what is reported by air controllers. Anyway, having the 
knowledge of each individual landmark visibility opens the field for a new quality in visibility 
reports (e.g. visibility in several directions, locations) compared to the currently used single distance 
measures only. 
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